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Abstract: The existence of nonresponse in survey sampling has engendered inconsistencies in the estimation of population 

parameter. Such estimation, being characterized by nonresponse bias has become a rule rather than the exception in survey 

sampling, and this has been long acknowledged in the literature. Several authors have come up with different techniques such 

as subsampling the nonresponse, imputation, and calibration to curb this menace. An attempt to overcome the challenges faced 

in existing works, this study considered the estimation of finite population mean using calibration approach with subsampling 

the nonrespondents. Owning to the fact that calibration estimation has been found to reduce bias and improve efficiency of 

estimators. The classical estimator by Hansen and Hurwitz for estimating the population mean with subsampling the 

nonrespondents is calibrated upon using the chi square distance function, and different choices of the tunning parameter result 

in the calibration estimators of combined regression and ratio. Expressions for the bias, variance and mean square error (MSE) 

of the proposed estimators are derived and their properties studied. Again, the optimum conditions under which the suggested 

estimators have minimum variance and MSE are equally provided. Both efficiency and empirical comparisons are in favor of 

the proposed estimators, and suggest that the proposed estimators are more efficient and reliable with high precision than the 

existing estimators even in double sampling. In addition, expressions for optimal sample sizes with respect to the cost of the 

survey have been derived to validate the superiority of the proposed estimators, and the empirical investigation confirms the 

proposed estimators as highly preferable. 
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1. Introduction 

In sample survey, the term non-response refers to the 

failure to collect information from one or more 

respondents on one or more variables. This becomes 

challenging in estimation, as the estimates of the 

population characteristics may be highly biased, and 

consequently may lead to wrong conclusions. Overtime, 

the usual estimation methods where the nonresponse is 

ignored assumed that the estimates based on the 

respondents are representatives of the combined 

population of respondents and non-respondents, and this 

assumption leads to an unknown bias. In order to utilize 

the advantages, M. H. Hansen and N. W. Hurwitz [1] 

developed an estimator which was the weighted mean of 

two estimators: the sample mean based on the units 

responded, and the sample mean based on the units of the 

sub-sample selected from the non-respondents. 

M. H. Hansen and N. W. Hurwitz [1] presented a 

classical estimator for estimation of mean of a characteristic 

of interest with subsampling the non-respondents suitable 

for different practical situations. Authors like K. M. 

Chaudhary et al. [2], K. M. Chaudhary, V. K. Singh and R. 

K. Shukla [3], S. Kumar [4], K. M. Chaudhary and A. 

Kumar [5], and A. Sanaullah, I. Elisan and M. Noor-UI-

Amin [6] etc. are among the several authors who have 
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adopted or extended the M. H. Hansen and N. W. Hurwitz 

[1] estimator by utilizing supplementary information and 

some known population parameters of the auxiliary variable 

using the conventional methods to obtain improved 

estimates of the population total/mean of the study variable. 

To further enhance the performance of estimators with 

subsampling the nonrespondents using two auxiliary 

variables, G. N. Singh and M. Usman [7] suggested some 

regression-cum-ratio estimators to estimate the population 

mean while N. Garib and U. Mahamood [8] proposed both 

difference and ratio estimators for the estimation of 

population distribution function of the study variable. The 

authors concluded that estimators with two auxiliary 

variables performed better than those with single auxiliary 

variable.  

In the progression to improve on the estimator of the 

population mean, A. E. Anieting and E. I. Enang [9], A. E. 

Anieting, E. I. Enang and C. E. Onwukwe [10], S. Guha and 

H. Chandra [11], and M. K Chaudhary, A. Kumar, and G. K. 

Vishwarkarma [12] extended the pioneer work on 

subsampling the nonrespondents by Hansen and Hurwitz to 

double sampling. However, M. J. Iseh and K. J. Bassey [13-

14] suggested an estimator in small area estimation in the 

presence of nonresponse using calibration technique to 

improve on both sample size as well as gain in efficiency, 

and their estimators had an overwhelming less bias and gain 

in efficiency. 

The question now becomes; what difference will 

calibration techniques make, since it is the process of 

incorporating auxiliary variable(s) into the existing 

estimator? 

This becomes testable following the argument by J. C. 

Deville and C. E. Sarndal [15] in support of the calibration 

approach. They argued that if the calibration constraint is 

satisfied for unbiasedness of the auxiliary variable that it 

will be reasonably profitable to combine the calibration 

weight with the sample mean/total of the study variable in 

practice, if the auxiliary variable and the study variable 

are strongly correlated either positively or negatively. This 

concept of calibration was also proven to be fruitful in M. 

J. Iseh, and E. I. Enang [16], where the use of auxiliary 

variable was seen to greatly reduced the bias of the 

synthetic estimator. 

Believing we make a good choice of the calibration 

constraints, this approach will be more beneficial to 

researchers in practical sense than the conventional approach 

of formulating estimators of the study variable.  

As an attempt in this direction, to bridge the gap in 

choosing from a list of available population parameters of the 

auxiliary variable, and methods of combining them, this 

study employs the calibration approach to achieve a reliable 

and preferable result. Two estimators are proposed from the 

existing classical estimator of M. H. Hansen and N. W. 

Hurwitz [1] through the conceptualization of calibration 

technique. 

2. Sampling Design 

Consider a population of size N divided into k strata. Let N�	be the size of i��  stratum ( i =  1,2,3. . . . . . . . . . . , k)  and a 

sample of size n�	 is drawn from the i��  stratum using SRSWOR scheme such that ∑ �� = ����� . It is assumed that 

nonresponse is detected on the study variable Y  only and 

auxiliary variable X is free from nonresponse. Also, assume 

that of the ��  units, ���  respond and ��� = �� − ���  fail to 

respond. Adopting M. H. Hansen and N. W. Hurwitz [1] 

techniques of subsampling the non-respondents, a sub sample 

of u�� = � !" , k� ≥ 1	unit is selected from the sample of n�� 

nonrepondents and information is collected from all of them. 

Due to the detection of nonresponse in the study variable, the 

classical estimator is being calibrated upon in order to 

compensate for nonresponse bias and high variance of the 

estimate. 

2.1. Hansen and Hurwitz Classical Estimator 

A classical estimator proposed by M. H. Hansen and N. W. 

Hurwitz [1] for estimating the population mean with 

subsampling the non-respondents is given as follows: 

y%&�∗ =	∑ P�"��� y%�∗  

where y%�∗ = � )	*+, )-� !	*+. !�  

V	0y%&�∗ ) = ∑ f�	P��S*��"��� + ∑ 03 4�)� "��� P��W��S�*��          (1) 

where S*��� and S*���  are respectively the mean squares of 

entire group and non-response group of study variables in the 

population for the i��  stratum. f�	 = 5 �� − �6 7 , k� = � )8 ! , P� =6 6 , and W�� = 6 !6  is the non-response rate of the i�� stratum 

in the population. 

2.2. Some Existing Estimators with Auxiliary Variable 

Some existing estimators for population mean in stratified 

sampling with single auxiliary variable with subsampling the 

non-respondents are presented as follows: 

K. M. Chaudhary, et al. [2] Ratio Estimator. 

A separate ratio estimator of population mean Y+ proposed 

by K. M. Chaudhary, et al. [2] is given as 

T& = ∑ P�"���  T�∗ 
where	T�∗ = y%�∗ : ;<+ -	=>	0;?%@A-	=)-	0�4>)	0;<+ -	=)BC 

If σ = 1, a = 1, b = 0	and	g = −1, 
The estimator gives 

T& =∑ P�"��� y%�∗ ?% <+  
And the bias and mean square error given as 

B (T&) = ∑ = P�"��� f�Y+� :C0C-�)� σ�λ��C?�� − σλ�	gρ�	C*�C?�B  
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MSE	(T&) =∑ P��"���  :f�	Y+��	PC*�� + C?�� 	σ�λ�� − 2λσg	ρ�	C*�C?�Q + 0" 4�)� 	W��	SR��� B                                  (2) 

MSE	0T&)S�T=∑ P��"���  Uf�	Y+��	PC*�� + C?�� 	σ�λ�� − 2λσg	ρ�	C*�C?�Q + P" 0VWA)4�Q� 0VWA) 	W��	SR��� X  
K. M. Chaudhary, V. K. Singh and R. K. Shukla [3] Combined Ratio Estimator. 

A combined ratio type estimator proposed by K. M. Chaudhary, V. K. Singh and R. K. Shukla [3] with subsampling the non-

respondents is given as 

TYZ 0σ) = y%&�∗ : 0[-Z)<	+ \]?%@A0[-])<	+-Z?%@A	B 
Where A = 0σ − 1)0σ − 2), B = 0σ − 1)0σ − 4), C = 0σ − 3)0σ − 2)0σ − 4), 

σ > 0, a = � 6 , y%&�∗ =	∑ P�"��� y%�∗ and x%&� =	∑ P�"��� x%� 
MSEPTYZ0σ)Q = ∑ f�	P��"��� 	 cS*�� + ϕ0σ)�RS� − 2ϕ0σ)Rρ�S?�S*�e                                               (3) 

where	ϕ0σ) = Z4\][-\]-Z 

K. M. Chaudhary and A. Kumar [5] Generalized Combined Ratio Estimator. 

A family of combined ratio-type estimators proposed by K. M. Chaudhary and A. Kumar [5] with subsampling the 

nonrespondents is given as follows: 

fgh = i%jk∗ U lm̅opq -r∝0l?%@A-r)-0�4∝)Plm̅opq -rQXt  

With mean square error given as 

uvw0fgh) = ∑ a�h���� x��vy�� + ∑ a�∗���� x��Pvy�� + z�{�|� ∝� vm�� − 2z{| ∝ x�vm�vy�Q + ∑ 0�}4�)T} ~������ x��vy��           (4) 

Where a�h = � �T}q − �6 �, a�∗ = � �T} − �T}q�, { = l�%l�%-r, and �%� = ∑ �̅�����  

2.3. Some Existing Estimators Under Double Sampling 

Estimator from A. E. Anieting and E. I. Enang [9] 

A product-ratio estimator under double sampling proposed by A. E. Anieting and E. I. Enang [9] is given as follows 

f�� = i%jk∗ 5m̅opq -Ф?%@A4Ф7  

Where Ф = ∑ �m�����  

i%jk∗ = ∑ ������ i%�∗; 
i%�∗ = T})y%�})-T}!y%�}!T}   

where �̅jkh = ∑ ������ �̅�h and mean square error given as 

uvw0f��) =���|� ∑ :5 �T} − ��}7 ���vy�� B���� − 2��|��∑ :5 �T} − ��}7���vm�� B���� + ��|� ∑ :5 �T} − ��}7 ���vm�� B���� − 2�| ∑ :5 �T} −������}7 �����vm�vy� + 2�|B + ∑ �5 �T} − ��}7 �����vm�vy� + ∑ :5 �T} − ��}7���vy�� + 0�}4�)T} ���~��vy�� B���� �����    (5) 

Where | = �%�%, � = �%�%-Ф, and � = �%�%4Ф, 

Estimator from A. E. Anieting, E. I. Enang and C. E. Onwukwe [10]. 

An estimator of population mean proposed by A. E. Anieting, E. I. Enang and C. E. Onwukwe [10] in double sampling with 

subsampling the nonrespondents using single auxiliary variable as follows: 

f��1 = i%jk∗ 5m̅opq 4�}?%@A4�}7  
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with mean square error 

uvw0f��1) =U5 �%�%4�}7� |� ∑ :5 �T} − ��}7 ���vm�� B − 5 �%�%-�}7����� |� ∑ U� �T}q − ��}� ���vm�� X − 2| 5 �%�%-�}7∑ 5 �T} − ��}7�������vm�vy� +��������
2 5 �%�%-�}7| ∑ � �T}q − ��}� x����vm�vy� + ∑ :5 �T} − ��}7 0�}4�)T} ���~��vy��� B�������� X                                  (6) 

uvw0f��1)S�T = �5 �%�%4�}7� |� ∑ U� �T}0��p) − ��}� ���vm�� X − 5 �%�%-�}7����� |� ∑ U� �T}0��p)) − ��}� ���vm�� X − 2| 5 �%�%-�}7∑ � �T}0��p) −��������
��}� �������vm�vy� + 25 �%�%-�}7| ∑ � �T}0��p)q − ��}� x����vm�vy� + ∑ U� �T}0��p) − ��}� P�}0��p)4�QT}0��p) ���~��vy��� X�������� �  

3. Proposed Estimators 

Motivated by M. H. Hansen and N. W. Hurwitz [1], we proposed the following estimator 

y%�∗ = ∑ Ω�"��� y%�∗                                                                             (7) 

where 	Ω� is the calibration weight chosen such that the distance function. ∑ 0Ω 4� )!	� � "���  is minimize subject to the calibration constraint 

∑ Ω�"��� x%� = X+                                                                               (8) 

And the optimization problem becomes 

Ф= ∑ 0Ω 4� )!� � "��� − 2λc∑ Ω�"��� x%� − X+e 
which is minimized with respect to the calibration weights such that 

Ω� = P��1 + 	λx%�q��                                                                              (9) 

Substituting Eq. (9) in Eq. (8), and solving for λ yields. λ = U<+4∑ � ?% � �)∑ � � �) ?% ! X Using the value of λ in Eq. (7) gives the required calibration estimator 

y%�∗ =	∑ P�	"��� y%�∗ +	∑ P�q�x%�"��� y%�	∗ U<+4∑ � 	?% 	� �)∑ � � � �) ?% ! X	                                                         (10) 

By Setting q� = 1 in Eq. (10) gives 

y%� ¡C∗ = ∑ P�"��� y%�∗ + ∑ � ?% 	� �) *+ 	∗∑ � � �) ?% ! cX+ − ∑ P�	x%�	"��� e  
which is in the form of the combined regression, and can be written as 

y%� ¡C∗ = ∑ P�	"��� y%�∗ +	β£cX+ − ∑ P�	x%�	"��� e	                                                               (11) 

where β£ = ∑ � 	� �) ?% *+ ∗∑ � � �) ?% !  

using Taylor’s series approximation method, we proceed as follows in deriving the variance of the suggested estimator in Eq. 

(11). 

Let, 

y%�∗ = Y+�01 + e¥) 

x%� = X+�01 + e�) 

E0e¥) = E0e�) = 0  

E0e¥�) = ¦P*+ ∗Q�%§! =	 f�C?�� + 0" 4�)� R+ ! W��	S*���   
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E0e��) = ¦0?% )�%§! =	 f�C?��   

E	0e¥e�) = ¨©ªP*+ ∗,?% QR+ <+ = f�ρ�C*�C?�  
where f� =	5 �� − �6 7, C?�� = «¬ !!

<+ ! , C*�� = «­ !!
R+ !  

E	Py%� ¡C∗ Q = ∑ P�"��� Y+�01 + E0e¥)) + βcX	+ − ∑ P�X+�"��� 01 + E0e�))e  
= ®% + β�X	+ − X	+�  

= ®%   

V	Py%� ¡C∗ Q = wcy%� ¡C∗ − EPy%� ¡C∗ Qe�  

= 	Ec∑ P�y%�∗"��� + βPX	+ − ∑ P�x%�"��� Q − Y+e�  

= E :∑ P�"��� Y+�01 + e¥) 	+ 	β 5X	+ − ∑ P�X+�"��� 01 + e�)7 − Y+B�  

= ∑ P��"��� :5 �� − �6 7 S*�� + 03 4�)� W��S*��� B + β� ∑ P��"��� 5 �� − �6 7 S?�� − 2β∑ P��"��� ρ� 5 �� − �6 7 S*�S?�         (12) 

Optimum Choice of β 

From Eq. (12) 

¯°P*+±²³´∗ Q¯µ = 2β∑ P��"��� 5 �� − �6 7 S?�� − 2 ∑ P��"��� ρ� 5 �� − �6 7 S*�S?� = 0  

β£ = ∑ � !� �) ¶ � ), 4 )· �«­ «¬ 
∑ � !� �) � ), 4 )· �«¬ !   

Substituting the value of β£  in Eq. (12) 

VPy%� ¡C∗ Q = ∑ P��"��� :5 �� − �6 7 S*�� + 03 4�)� W��S*��� B + ¸∑ � !� �) ¶ � ), 4 )· �«­ «¬ 
∑ � !� �) � ), 4 )· �«¬ ! ¹� ∑ P��"��� 5 �� − �6 7 S?�� − 2 ¸∑ � !� �) ¶ � ), 4 )· �«­ «¬ 

∑ � !� �) � ), 4 )· �«¬ ! ¹∑ P��ρ�"��� 5 �� −�6 7 S*�S?�  
VPy%� ¡C∗ Q = ∑ P��"��� :5 �� − �6 7 S*�� − 5 �� − �6 7 ρ��S*�� + 03 4�)� W��S*��� B                                        (13) 

Optimum Sample Size Determination for n� and k� 
Let C�¥ be he cost per unit of selecting n�	units, C�� be the cost per unit in enumerating n��units and C�� be the cost per unit 

of enumerating n�� units, then the total cost for the i�� stratum is given by C� = C�¥n� +	C��n�� + C��n��	∀	i = 1, 2, … , k	. 
Now, we consider the average cost per stratum 

E	0C�) = n� :C�¥ +	C��W�� +	C��	 ¾ !3 	 B  
Thus the total cost over all the strata becomes 

C¥ =	∑ E	0C�)"���   

C¥ = ∑ n�"��� :C�¥ +	C��W�� + C��	 ¾ !3 	 B                                                                (14) 

Consider the Lagrange function 

Ф = 	VPy%� ¡C∗ Q + μC¥ 

Ф = ∑ P��"��� À5 �� − �6 7 S*�� − 5 �� − �6 7 ρ��S*�� + 03 4�)� W��S*��� + μ∑ n�"��� :C�¥ + C��W�� + C�� ¾ !3 BÁ                  (15) 
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¯Ф¯� = − �� ! P��S*�� − 03 4�)� ! P��W��S*��� + �� ! ρ��S*�� P�� + μ5C�¥ + C��W�� + C�� ¾ !3 7 = 0  

n� = Â� !:P�4¶ !Q«­ ! -03 4�)¾ !«­ !! B
ÂÃ�Z Ä-Z )¾ )-Z !Å !Æ �                                                                    (16) 

Again, by taking partial derivative of Eq. (15) with respect to K� 
¯Ф¯3 = � !¾ !«­ !!

� − μn�C�� ¾ !3 ! = 0  

K� = ÂÃ� !Z !� !«­ !	                                                                                    (17) 

μ = � !«­ !! 3 !� !Z !   

√μ = � «­ !3 � ÉZ !                                                                                      (18) 

Substitute Eq. (18) in Eq. (16) gives 

n� = � Â:P�4¶ !Q«­ ! -03 4�)¾ !«­ !! BÊ Ë­ !Æ , ÉÌ ! Â�Z Ä-Z )¾ )-Z !Å !Æ �                                                                            (19) 

Then solving for K� in Eq. (17) becomes 

K�0Í��) = Â:P�4¶ !Q«­ ! 4¾ !«­ !! BZ !«­ !É0Z Ä-Z )¾ ))   

K�0Í��) = ] ÉZ !«­ ![                                                                                   (20) 

A� = É0C�¥ + C��W��), and B� = Âc01 − ρ��)S*�� − W��S*��� e  
substituting Eq. (20) in Eq. (16), we have 

n� = � Î¸] !-Å !Ë­ !! ÉÌ !Ï ÐÑ 	¹
√ÃÎ[ !-Å !Ë­ !! Ï ÉÌ !Ï 

                                                                             (21) 

To obtain n�Í��, we substitute Eq. (21) and Eq. (20) in Eq. (14) 

CÍ = ∑
ÒÓ
ÓÓ � Î] !-ÉÌ !Ï Å !Ë­ !Ð 
√Ã	Î[ 	!-ÉÌ !Ð Å !Ë­ !Ï 

ÔC�¥ + 	C��W�� + C�� ¾ !ÉÌ !Ï Ë­ !Ð 
Õ
Ö×
××"���   

CÍ√μ = ∑ cP�PB�A� + √C��W��S*��Qe"���   

√μ	 = �ZV ∑ cP�PB�A� + √C��W��S*��Qe"���   

n�0Í��) = � ZVÎ] Ø	! Å !Ë­ !ÉÌ 	!Ï Ð 
Î[ !-	ÉÌ 	!Å !Ë­ !Ð Ï ∑ c� P] [ -√Z !¾ !«­ !Qe� �)

                                                      (22) 

Substituting Eq. (22) in Eq. (13) gives the minimum variance of the proposed estimator. 



 Science Journal of Applied Mathematics and Statistics 2022; 10(4): 45-56 51 

 

VÙ��	Py%� ¡C∗ Q = ∑ P�� �� �� 0VWA) − �6 � c01 − ρ��)S*�� e P3 0VWA)4�Q� 0VWA) + W��S*��� �"���                                     (23) 

3.1. The Proposed Combined Ratio Estimator 

Setting q� = �?% 	in Eq. (10) gives 

y%� ∗ = ∑ Ú}y%}∗Û}�)∑ Ú}m̅}Û}�) �%                                                                             (24) 

which is in the form of combined ratio estimator with subsampling the non-respondents. Since it is a ratio estimator, it is 

assumed biased, and the bias is derived as follows 

y%� ∗ = ∑ � � �) �% 0�-¡Ä)∑ � � �) �% 0�-¡)) X+  

y%� ∗ =	∑ P�"��� ®%�01 + e¥)01 + e�)4�  

By Taylor’s approximation method, we have 

y%� ∗ = Ü P�
"

��� ®%�01 + e¥) U1 − e� + 12 01 + 1)e��X 
y%� ∗ − Y+ = 	∑ P�"��� ®%��e¥ − e� + e�� − e¥e��                                                              (25) 

Taking expectation of Eq. (25) to the first order of approximation, we obtain 

E0y%� ∗ − Y+) = B	0y%£�) = ∑ P�"��� ®%�E0e¥ − e� + e�� − e¥e�)  

B(y%� ∗ )=∑ P�"��� ®%� 5 �� − �6 7 cC*�� − ρ�C*�	C?�	e	                                                           (26) 

Squaring both sides of Eq. (25), and taking expectation of both sides gives 

E0y%� ∗ − ®%�)� = ∑ P��"��� Y+��	�E	0e¥�) − 2	E0e¥e�) + 	E0e��)�  
uvwPy%�∗ Q = 	∑ P��"��� Y+��	 :5 �� − �6 7 PC*�� + C?�� − 2ρ�C*�C?�Q +	 03 	4�)� W��	S*��� B	                               (27) 

3.2. Optimum Sample Size Determination for ÝÞ and ßÞ 
Recall the total cost over all strata in Eq. (14), then the optimization problem becomes 

Δ = V0y%� ∗ ) + 	λC¥                                                                                (28) 

Δ = ∑ P��"��� Y+��	 :5 �� − �6 7 PC*�� + C?�� − 2ρ�C*�C?�Q +	 03 	4�)� W��	S*��� B + λ∑ n�"��� :C�Í + C��	W�� +	C��	 ¾ !3 B          (29) 

¯á¯	� = − � !� ! cY+��	PC*�� + C?�� − 2ρ�C*�C?�Q +	0K� − 1)W��	S*��� e + λ :C�Í + C��	W�� +	C��	 ¾ !3 B = 0  

n� = p� Â:R+ !5Z­ ! -Z¬ ! 4�¶ Z­ Z¬ 7-	0" 4�)¾ !	«­ !! B
√ãÎZ V-Z )	¾ )-	Z !	Å !Æ !

                                                             (30) 

Again, taking the partial derivative of Eq. (29) with respect to K� 
¯á¯3 = � !¾ !«­ !!

� − λn�C�� ¾ !3 ! = 0  

K� = Îã� !Z !� !«­ !!  Squaring both sides, and solving for λ, we have 
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λ = � !«­ !! 3 !� !Z !   

√λ 	= � «­ !3 � ÉZ !                                                                                      (31) 

Substitute Eq. (31) in Eq. (30), and solve for K�Í�� 
n�=P� ÂR+ !5Z­ ! -Z¬ ! 4�	¶ Z­ 	Z¬ 	7-03 4�)¾ !	«­ !!

Æ Ê 	@­ !, ÉÌ ! Â�	Z Ä-	Z )¾ )-Z !	ÅÑ !Æ 	 �  

K�0Í��) = Â�R+ !	5Z­ ! -Z¬ ! 4�¶ Z­ 	Zä 	74¾ !«­ !! �	Z !«­ !É	Z Ä-	Z )¾ )   

K�Í�� = å ÉZ !«­ ![                                                                                   (32) 

where A� = É	C�¥ +	C��W��, and 

D� = Â�Y+��	PC*�� + C?�� − 2	ρ�C*�	C<�	Q − W��S*��� �	 Substituting Eq. (32) in Eq. (30), we express n� as follows 

n� = � Îå Ø	! Å !Ë­ !ÉÌ 	!ç Ð 
√ãÎ[ !-	ÉÌ 	!Å !Ë­ !ç ç 

                                                                               (33) 

As before, to obtain the value of √λ in terms of the total cost, we substitute Eq. (33) and Eq. (32) in Eq. (14) 

CÍ = ∑
èé
ê� Îå !-ÉÌ !ç Å !Ë­ !Ð 

√ãÎ[ 	!-ÉÌ !Ð Å !Ë­ !ç 
ÔC�¥ + 	C��W�� + C�� ¾ !ÉÌ !ç Ë­ !Ð 

Õ
ëì
í"���   

CÍ√λ = ∑
èé
ê� Îå !-ÉÌ !ç Å !Ë­ !Ð 

Î[ 	!-ÉÌ !Ð Å !Ë­ !ç 
�A�� + ÉZ ![ ¾ !«­ !å �

ëì
í"���   

CÍ√λ = ∑ ÀP�ÂPD��A�� + 2D�A�√C��W��S*�� + C��W��� S*��� QÁ"���   

√λ = �ZV ∑ cP�PB�A� + √C��W��S*��Qe"���                                                                 (34) 

substituting Eq. (34) in Eq. (33), we obtain the optimum sample size as 

n�Í�� = � ZVÎå Ø	! Å !Ë­ !ÉÌ !ç Ð 
Î[ !-	ÉÌ !Å !Ë­ !Ð ç ∑ c� På [ -√Z !¾ !«­ !Qe� �)

                                                         (35) 

Therefore, by substituting Eq. (35) in Eq. (27), the minimum mean square error of the proposed calibration ratio estimator 

with subsampling the non-respondents is obtain as 

uvw0y%� ∗ )S�T = ∑ P��"��� UY+�� 	� �� 0VWA) − �6 � PC*�� + C?�� − 2ρ�C*�C?�Q + P3 0VWA)4�Q� 0VWA) W��S*��� X                      (36) 

3.3. Efficiency Comparison of the Proposed Estimators with the Existing Estimators Under Single Stage Sampling 

Condition I: Comparing Eq. (27) with Eq. (1) 
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MSE	0y%� ∗ ) < V0y%&�∗ ) if 

∑ P��Y+��f�PC*�� + C?�� − 2ρ�C*�C?�Q + 03 4�)� 	W��	SR��� < ∑ P��f�S*��"��� +"��� ∑ P�� 03 4�)� W��	S�*��"���   

⟹ C*�� + C?�� − 2ρ�C*�C?� < C*��   

⟹ ρ� < Z¬ !
�Z­ Z¬   

If this condition is satisfied, then MSE	0y%� ∗ ) will be better than V0y%&�∗ ) 

Condition II: Comparing Eq. (13) with Eq. (1) 

VPy%� ¡C∗ Q < ð0y%&�∗ ) if 

∑ P��"��� :f�S*�� − ρ��f�S*�� + 53 4�� 7W��S*��� B < ∑ P��"��� f�S*�� + ∑ P�� 53 4�� 7"��� W��	S*���   

⟹ 01 − ρ��)f�S*�� < f�S*��   

⟹ 1 − ρ�� < 0  

⟹ ρ�� < 1  

If this condition is satisfied, then VPy%� ¡C∗ Q will be better than V0y%&�∗ ) 

Condition III: Comparing Eq. (27) with Eq. (2) 

uvw0y%� ∗ ) < uvw0T&) if 

∑ P��"��� :Y+��f�PC*�� + C?�� − 2ρ�C*�C?�Q + 0" 4�)� 	W��S�*�� B < ∑ P��"��� :Y+��f�PC*�� + C?�� σ�λ�� − 2λσgρ�C*�C?�Q + 03 4�)� 	W��S�*�� B  
⟹ C?�� − 2ρ�C?�C*� < C?�� σ�λ�� − 2λσgρ�C?�C*� 

By setting	σ = 1, λ = 1, and	g = −1 

⟹ C?�� − 2ρ�C?�C*� < C?�� + 2ρ�C?�C*�  ⟹ 4ρ�C*�C?� > 0  

⟹ ρ� > 0  

uvw0y%� ∗ ) will be more efficient if the following conditions are satisfied; ρ� > 0, σ = 1, λ = 1, and	g = −1. 

Condition IV: Comparing Eq. (13) with Eq. (2) 

VPy%� ¡C∗ Q < uvw0T&) if 

∑ P��"��� :f�S*�� − ρ��f�S*�� + 53 4�� 7W��S*��� B < ∑ P��"��� :f�Y+��PC*�� + σ�λ��g�C?�� − 2λσ�gρ�C*�C?�Q + 03 4�)� 	W��S�*�� B  
S*�� 01 − ρ��) < Y+��PC*�� + σ�λ��g�C?�� − 2λσ�gρ�C?�C*�Q  

Again, by setting	σ = 1, λ = 1, and	g = −1, VPy%� ¡C∗ Q will be more efficient if and only if; 

For ρ� > 0 

⟹ S*�� 01 − ρ��) − Y+��PC*�� + C?�� + 2ρ�C*�C?�Q < 0  

For ρ� = 0 

⟹ C?�� > 0 

For ρ� = 1 

⟹ Y+��PC*�� + C?�� + 2C*�C?�Q > 1 
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4. Empirical Study 

This section will deal extensively on numerical analysis to validate the theoretical results earlier derived. Data considered is 

from N. Koyuncu, and C. Kadilar [17] used for the single stage sampling. 

Table 1. Data statistics from koyuncu and kadilar (2009). 

Stratum no. ñò óò ô+ò  õ+ò  öôò  öõò  öõôò  ÷ò  öôòø  

1 127 31 703.74 20804.59 883.835 30486.751 25237153.52 0.936 440 

2 117 21 413.00 9211.79 644.922 15180.769 9747942.85 0.996 200 
3 103 29 573.71 14309.30 1033.467 27549.697 28294397.04 0.994 400 

4 170 39 424.66 9478.85 810.585 18218.931 14523885.53 0.983 405 

5 205 22 527.03 5569.95 403.654 8497.776 3393591.75 0.989 180 
6 201 39 393.84 12997.59 711.723 23094.141 1586473.97 0.965 300 

Table 2. MSE and PRE of the proposed and existing estimators in single stage design. 

ùòø  úò û0ü%ýþ)  ���0�ý)  ûPü%����∗ Q  ���0ü%��∗ )  	
�0�ý)  	
�Pü%����∗ Q  	
�0ü%��∗ )  
0.1 

2.0 1443.1 1203.337 102.46 116.43 119.2 1408.452 1239.457 

2.5 1461.3 1221.576 120.66 134.62 119.6 1211.089 1085.5 
3.0 1479.5 1239.774 138.87 152.82 119.3 1065.385 968.1324 

3.5 1497.7 1257.973 157.06 171.02 119.9 954.5846 875.7455 

0.2 

2.0 1500.3 1239.774 161.23 175.77 119.9 930.534 853.5586 
2.5 1515.9 1236.172 175.86 189.22 120.1 861.9925 801.131 

3.0 1552.3 1312.569 211.63 225.61 120.9 733.4971 688.0457 

3.5 1588.7 1348.967 248.05 262.02 121.5 640.4757 606.3278 

0.3 

2.0 1612.5 1276.171 254.67 278.55 120.9 633.1723 578.8907 

2.5 1620.4 1330.768 263.54 288.11 122.7 614.8592 562.4241 

3.0 1625.9 1385.364 274.51 298.41 138.8 592.f2917 544.8544 
3.5 1679.7 1430.690 290.34 353.01 157.6 578.5286 475.8222 

0.4 

2.0 1681.1 1312.569 320.11 359.87 161.3 525.1632 467.1409 

2.5 1690.4 1385.364 340.45 368.45 175.6 496.5193 458.7868 
3.0 1738.3 1458.195 383.87 410.43 211.3 452.8356 423.5314 

3.5 11770.7 1530.954 430.03 444.00 248.5 411.762 398.8063 

Table 3. Optimal sample sizes, costs of study and minimum variances. 

�� = $	��,���	�Þ� = $��,���	�òø = $�ø��  ùòø  úò  óò0��	��þ)  úò0��	��þ)  óò0����	��þ)  úò0����	��þ)  ���0��)�ÞÝ  ��òóPü%����∗ Q  ���0ü%��∗ )�ÞÝ  

0.1 

2.0 10 0.5 8 0.3 79.1 67.1 70.3 

2.5 11 0.6 4 0.4 100.2 70.5 79.4 
3.0 11 0.7 6 0.5 107.1 73.2 79.9 

3.5 9 1.0 5 0.1 109.4 75.7 80.5 

0.2 

2.0 5 0.5 3 0.2 107.2 80.3 85.3 
2.5 5 0.6 3 0.3 120.1 83.1 88.4 

3.0 6 0.7 3 0.4 120.9 87.3 90.1 

3.5 5 1.0 3 0.1 123.1 89.5 95.7 

0.3 

2.0 10 0.5 5 0.4 120.8 90.4 95.9 

2.5 8 0.6 4 0.5 131.7 90.7 99.8 

3.0 7 0.7 3 0.3 134.2 92.9 100.3 
3.5 7 1.0 3 0.1 137.1 95.4 107.1 

0.4 

2.0 9 0.5 6 0.2 140.4 97.6 111.3 

2.5 5 0.6 3 0.4 140.7 99.7 125.1 
3.0 10 0.7 5 0.2 142.1 100.1 139.9 

3.5 11 1.0 6 0.1 147.5 105.3 141.7 

For the double sampling, data from K. M. Chaudhary and A. Kumar [5] is used to validate the theoretical claims as shown in Table 4. 

Table 4. Data statistics from [5] for double sampling design. 

Stratum No. �Þ  ÝÞh  ÝÞ  �+Þ  �+Þ  ��Þø   ��Þø   	Þ  ��Þøø   1	 73	 65	 26	 40.85	 39.56	 6389.1	 6624.44	 0.999	 618.88	2	 70	 25	 10	 27.57	 27.57	 1051.07	 1147.01	 0.998	 240.91	3	 97	 48	 19	 25.44	 25.44	 2014.97	 2205.4	 0.999	 265.52	4	 44	 11	 5	 20.36	 20.36	 538.47	 485.27	 0.997	 83.69	
Table 5. Variances and mses of the proposed and existing estimators under single/double sampling for different choices of ~�� and %�. 

&Þø  'Þ  û0�+�(
∗ )  ���0�)

h )  ���0�*+)  ���0�*+�)  ûP�+),+-
∗ Q  ���0ü%��∗ )  

0.1 

2 34.42 6.28 4.66 4.38 0.19 0.21 

2.5 34.67 6.54 4.92 4.64 0.29 0.30 
3 34.92 6.79 5.17 4.89 0.38 0.39 
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&Þø  'Þ  û0�+�(
∗ )  ���0�)

h )  ���0�*+)  ���0�*+�)  ûP�+),+-
∗ Q  ���0ü%��∗ )  

0.2 

2 34.92 6.79 5.26 4.89 0.38 0.39 

2.5 35.43 7.30 5.66 5.64 0.56 0.58 
3 34.94 7.80 6.18 6.12 0.75 0.76 

0.3 

2 35.43 7.30 5.66 5.40 0.56 0.58 

2.5 36.19 8.06 6.44 6.43 0.48 0.85 
3 36.95 8.86 7.22 7.12 1.11 1.12 

Table 6. PRE of the proposed estimators under single phase with respect to i%jk∗  and the existing double sampling estimators for the different choices of ~�� and 

%�. 
&Þø 'Þ  	
�0�+�(

∗ )  	
�0�)h )  	
�0�*+)  	
�0�*+�)  	
�P�+),+-
∗ Q  	
�0�+),

∗ )  

0.1 

2 100 540.1 738.6 785.8 18115.8 16390.5 

2.5 100 530.1 704.7 747.2 11955.2 11556.7 

3 100 514.3 675.4 714.1 1294.8 1261.5 

0.2 

2 100 514.3 663.9 714.1 9189.4 8953.8 

2.5 100 485.3 626.0 628.2 6326.8 6108.6 

3 100 447.9 581.6 587.3 4658.7 4597.4 

0.3 

2 100 485.3 625.97 656.1 6326.786 6108.621 

2.5 100 449.0 561.96 562.8 7539.583 4257.647 

3 100 417.0 511.8 518.9 3328.829 3299.107 

Table 7. Costs of study and optimal sample sizes. 

)� = $���ø�	)Þ� = $��,���	)Þø = $�, ø��  

&Þø 'Þ  ÝÞ0*+�	./()  ßÞ0*+�	./()  'Þ0),	./()  ÝÞ0),	./()  ÝÞ0),+-	./()  'Þ0),+-	./()  
0.1 

2 9.7 0.51 0.13 5.1 4.0 0.10 

2.5 9.9 0.60 0.15 6.7 4.2 0.12 
3 10.1 0.93 0.19 9.2 4.9 0.18 

0.2 

2 10.1 0.93 0.21 9.2 4.9 0.20 

2.5 10.3 1.10 0.22 9.5 5.7 0.23 
3 10.5 1.12 0.34 8.1 7.8 0.29 

0.3 

2 10.3 1.10 0.37 9.8 5.7 0.20 

2.5 11.1 2.3 0.41 10.1 7.9 0.30 
3 11.7 2.8 0.47 11.3 8.1 0.37 

Table 8. Minimum mses and variance for optimal sample sizes of the proposed estimators and the existing double sampling estimator. 

&Þø 'Þ  �ÞÝ	���0�*+�)  û�ÞÝP�+),+-
∗ Q  ���0ü%��∗ )�ÞÝ  

0.1 

2 3.01 0.013 0.35 

2.5 3.52 0.017 0.36 

3 3.57 0.018 0.41 

0.2 

2 3.57 0.018 0.41 

2.5 4.31 0.019 0.47 

3 4.99 0.02 0.51 

0.3 

2 4.25 0.019 0.47 

2.5 5.33 0.030 0.52 

3 5.49 0.039 0.55 

 

5. Discussion 

From Table 2, it is observed that the estimator of the 

proposed family certainly provides better estimates with 

gains in efficiency as compared to the classical estimator i%jk∗ , and the generalized ratio estimator by K. M. 

Chaudhary, et al.[2] T&. It is also seen that the efficiency of 

the existing estimators decrease rapidly with an increase in 

non-response rate W��	as well as with an increase in inverse 

sampling rate K�. However, the loss in efficiency was not 

remarkable in the proposed estimator. This outstanding 

performance can clearly be attributed to the concept of 

calibration as mentioned in the literature. Similarly, the 

performance of the existing and proposed estimators were 

examined for minimum variance and MSEs in Table 3, and 

the result reveals that the suggested estimators 

outperformed the existing estimator T& in terms of gains in 

efficiency with optimal sample sizes. 

Again, considering also the data-set used by K. M. 

Chaudhary and A. Kumar [5], it is observed from Tables 5 

and 6 that the estimates of the population means for the 

proposed estimators i%g01t∗  and i%g0∗  than the existing 

estimators i%jk∗ , fgh , fl1 , and fl1�  at different choices of 

inverse sampling rates %�. In real life application, it suffices 

to say that the proposed estimators are highly preferred in 

terms of performance and simplicity, compared to the 

rigorous nature and complexity in handling the bias and 

MSEs of the existing generalized combined ratio estimator fgh 
and the product-ratio estimators in double sampling	fl1 , and fl1�. 

As shown in Table 8, minimizing the variance and mean 

square error for optimal sample sizes in respect to the cost of 

the survey on the existing estimator fl1� , as well as the 

proposed estimators i%g01t∗  and i%g0∗ , were computed. The 

result shows that the proposed estimators give minimum 

variance and means square error than the existing estimator 

under double sampling. 
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6. Conclusion 

This work was aimed at reducing the effect of biasness 

and variance or mean square error as the case may be 

because of nonresponse from the proposed estimator 

through the concept of calibration. As seen from both the 

efficiency comparison, and the numerical evaluations, the 

proposed estimators outperformed the existing estimators, 

even that of the double sampling design. It is evident to say 

that the calibration technique suggests the best fit of 

auxiliary variable into an existing estimator through the 

formulation of constraint equation(s), and this 

conceptualization guarantees stability in gains of efficiency 

even with increase in the nonresponse and inverse sampling 

rates, whereas the existing estimators considered in this 

study, both single and two phase that adopt the 

conventional approach of combining supplementary 

information with the study variable cannot compete 

favorably. The proposed estimators are also shown to be 

preferred in terms of cost effectiveness and minimum 

variance and mean square error. Consequently, if 

nonresponse is only measured in the study variable and the 

auxiliary variable is free from nonresponse, it will be 

fruitful to adopt the concept of calibration for optimal result. 

However, in a situation where the population mean is not 

known, the authors have considered a case of double 

sampling using calibration approach in future work. 
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